Реклама на сайте (разместить):



Реклама и пожертвования позволяют нам быть независимыми!

Обобщённый метод моментов

Материал из Википедии
(перенаправлено с «Обобщенный метод моментов»)
Перейти к: навигация, поиск

Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.

Сущность метода[править]

Пусть распределение случайного вектора x зависит от некоторого вектора неизвестных параметров b (количество параметров — k). Пусть также имеются некоторые функции g(x, b) (их количество q не меньше числа оцениваемых параметров), называемые моментными функциями (или просто моментами), для которых из теоретических соображений предполагается, что

m(b)=E[g(x,b)]=0.

Базовая идея метода моментов заключается в использовании в моментных условиях вместо математических ожиданий их выборочные аналоги — выборочные средние

\hat{m}(b)=\overline {g(x,b)},

которые согласно закону больших чисел при достаточно слабых условиях должны асимптотически сходится к математическим ожиданиям. Поскольку количество условий на моменты в общем случае больше количества оцениваемых параметров, то однозначного решения эта система ограничений не имеет.

Обобщённым методом моментов (ОММ) называется оценка минимизирующая положительно определённую квадратичную форму от выборочных условий на моменты, в которых вместо математических ожиданий используются выборочные средние:

\hat {b}_{GMM}=\arg \min_{b}\hat{m}(b)^TW\hat{m}(b),

где W — некоторая симметрическая положительно определённая матрица.

Весовая матрица может быть произвольной (с учётом положительной определённости), однако доказано,[источник не указан 2054 дня] что наиболее эффективными являются GMM-оценки с весовой матрицей, равной обратной ковариационной матрице моментных функций W=V^{-1}_g. Это так называемый эффективный GMM.

Однако, поскольку на практике эта ковариационная матрица неизвестна, то применяют двухшаговую процедуру (двухшаговый GMM — Хансен, 1982 г.):

Шаг 1. Оцениваются параметры модели с помощью GMM с единичной весовой матрицей.

Шаг 2. По выборочным данным и найденным на первом шаге значениям параметров оценивают ковариационную матрицу моментных функций \hat{V}_g=\overline {g(x,\hat{b})g(x,\hat{b})^T} и используют полученную оценку в эффективном GMM.

Эту двухшаговую процедуру можно продолжить (итеративный GMM): используя оценки параметров модели на втором шаге ковариационная матрица моментов оценивается снова и повторно применяется эффективный GMM и т. д. итеративно до достижения требуемой точности.

Также возможен подход к численной минимизации целевой функции  \hat {m}^T(b)\hat{V}^{-1}_g(b)\hat {m}(b) по неизвестным параметрам b. Тем самым одновременно оцениваются и параметры и ковариационная матрица. Это так называемый непрерывно обновляемый (Continuously Updated) GMM (Хансен, Хитон, Ярон, 1996 год).

Свойства метода[править]

Оценки обобщённого метода моментов при достаточно слабых условиях являются состоятельными, асимптотически нормальными, а оценки эффективного GMM являются также асимптотически эффективными. Можно показать, что

\sqrt{n}(\hat b_{GMM} - b) \xrightarrow{d} N(0, V_{b}).

В общем случае

V_{b}=(G^TWG)^{-1}G^TW V_g WG(G^TWG)^{-1}

где G-математическое ожидание матрицы первых производных g по параметрам. В случае эффективного GMM формула ковариационной матрицы существенно упрощается:

V_b=G^TV^{-1}_gG.

J-тест[править]

При использовании GMM важным тестом является тест на сверхидентифицирующие ограничения (J-тест). Нулевая гипотеза заключается в том, что условия (ограничения) на моменты имеют место (то есть предположения модели верны). Альтернативная — что они неверны.

Статистика теста равна значению целевой функции GMM, умноженному на количество наблюдений. При нулевой гипотезе

J=n \hat {m}^T(\hat{b})\hat{V}^{-1}_g\hat {m}(\hat{b}) ~\xrightarrow {d}~\chi^2(q-k).

Таким образом, если значения статистики больше критического значения распределения \chi^2(q-k) при заданном уровне значимости, то ограничения отвергаются (модель неадекватна), в противном случае модель признается адекватной.

См. также[править]

Литература[править]

  • Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с. — ISBN 978-5-7749-0473-0.
Статью можно улучшить?
✍ Редактировать 💸 Спонсировать 🔔 Подписаться 📩 Переслать 💬 Обсудить
Позвать друзей